Lie Superalgebras and Sage

Daniel Bump

July 26, 2018

With the connivance of Brubaker, Schilling and Scrimshaw.

Lie Methods in Sage

Lie methods in WeylCharacter class:

- Compute characters of representations of Lie groups
- Tensor product
- Symmetric and Exterior powers
- Branching Rules
- Functionality is complete and fast

Other relevant tools already in Sage include:

- Crystal bases
- Integrable highest-weight representations of affine Lie algebras
- Symmetric Function code

Lie superalgebras

- In mathematical physics, one encounters symmetries that mix commuting and anticommuting variables.
- Lie superalgebras are a framework for studying these.
- A super vector space is a Z₂ graded vector space
 V = V₀ ⊕ V₁.
- If $V_0 = \mathbb{C}^m$ and $V_1 = \mathbb{C}^n$ we use the notation $V = \mathbb{C}^{m|n}$.

Example: Let $\bigvee(U)$ and $\wedge(U)$ be the symmetric and exterior algebras over a vector space *U*. If *V* is a super vector space

$$\bigvee(V) = \bigvee(V_0) \otimes \bigwedge(V_1),$$
$$\bigwedge(V) = \bigwedge(V_0) \otimes \bigvee(V_1).$$

$\mathfrak{gl}(m|n)$

- Many algebraic structures have super analogs.
- End(*V*) is itself a super vector space.
- $\operatorname{End}(V)_0 = \operatorname{End}(V_0) \oplus \operatorname{End}(V_1).$
- $\operatorname{End}(V)_1 = \operatorname{Hom}(V_0, V_1) \oplus \operatorname{Hom}(V_1, V_0)$
- If $V = \mathbb{C}^{m|n}$ then $\mathfrak{gl}(m|n) = \operatorname{End}(V)$

The Lie bracket is modified:

$$[X, Y] = XY - (-1)^{\deg(X)\deg(Y)}YX$$

This illustrates how all algebraic operations are modified in the super world. When two elements of odd degree are interchanged, there is a sign introduced.

Sage considerations

If \mathfrak{g} is a Lie superalgebra then \mathfrak{g}_0 is a Lie algebra. Therefore we may inherit from the <code>WeylCharacterRing</code> instance for \mathfrak{g}_0 .

There should be some general code for working with Lie superalgebras, their root systems and characters.

However implementing full-feature code for all Lie superalgebras seems a long range goal.

It may be good to get working code for a few particular Lie superalgebras beginning with $\mathfrak{gl}(m|n)$.

Other Lie superalgebras with high priority are \mathfrak{osp} and $\mathfrak{q}(n)$.

History of $\mathfrak{gl}(m|n)$

- Kac: foundational work, Kac modules
- Berele and Regev: supersymmetric Schur functions, polynomial representations
- Hughes, King, van der Jeugt and Mieg-Thierry: much work culminating in a general (conjectural) formula for irreducible characters; and a rigorous formula for atypicality 1.
- Serganova introduced ideas of Kazhdan-Lusztig theory leading to a satisfactory theory
- Brundan: character formula
- Su and Zhang: character formula

$\mathfrak{gl}(m|n)$

- Let \mathfrak{g} be the Lie superalgebra $\mathfrak{gl}(m|n)$.
- Let \mathfrak{h} denote the diagonal (Cartan) subalgebra of $\mathfrak{g}.$
- The weight lattice ∧ ≅ Z^{m+n} of g may be identified with the weight lattice of its even part g₀ = gl(m) × gl(n).
- The lattice Λ comes with an invariant bilinear form (λ|μ) of signature (m, n).
- If $\{\mathbf{e}\}_{i=1}^{m+n}$ is the standard basis vectors of Λ , then

$$(\mathbf{e}_i|\mathbf{e}_j) = \begin{cases} 1 & i \leq m \\ -1 & i > m \end{cases}$$

Root system

- The root system Φ = Φ₀ ∪ Φ₁, where Φ₀ (resp. Φ₁) is the set of even (respectively odd) roots.
- If e_i (1 ≤ i ≤ m + n) are the standard basis vectors, then the positive roots consist of α_{ij} = e_i − e_j with 1 ≤ i < j ≤ m + n.
- The odd positive roots α_{ij} with 1 ≤ i ≤ m, m+1 ≤ j ≤ m + n are all isotropic.

(even	odd	Ν
	odd	even	V

Atypicality

A weight $\lambda = (\lambda_1, \dots, \lambda_{m+n})$ is dominant if $\lambda_1 \leq \dots \leq \lambda_m$ and $\lambda_{m+1} \leq \dots \leq \lambda_{m+n}$.

Kac defined the notion of atypicality of the dominant weight λ to be the number of odd positive roots α such that $(\lambda + \rho | \alpha) = 0$.

We say such roots α are atypical for λ .

If the atypicality is 0, we call λ typical. For these the representation theory is simple.

Atypicality 1 starts to show interesting behavior but is still not too hard.

Representations

Every dominant weight λ parametrizes an indecomposable Kac module $\mathcal{K}(\lambda) = \operatorname{Ind}_{\mathfrak{g}_0 \oplus \mathfrak{u}_1^+}^{\mathfrak{g}} V_0(\lambda).$

Here $V_0(\lambda)$ is the unique irreducible module of \mathfrak{g}_0 with highest weight λ , and \mathfrak{u}_1^+ is the abelian subalgebra generated by the odd positive root spaces.

There is also a unique irreducible module $L(\lambda)$ with highest weight λ , which is the unique irreducible quotient of $K(\lambda)$.

 $K(\lambda)$ has a nice character formula.

If λ is typical then $K(\lambda) = L(\lambda)$. In general the character of $L(\lambda)$ is harder to compute.

Characters of Kac modules

The character $\chi_{\mathcal{K}(\lambda)}$ of the Kac module has a simple description. Let

$$L_0 = \prod_{\alpha \in \Phi_0^+} (e^{\alpha/2} - e^{-\alpha/2}), \qquad L_1 = \prod_{\alpha \in \Phi_1^+} (e^{\alpha/2} + e^{-\alpha/2}).$$

Let $W = S_m \times S_n$ (Weyl group), $\rho = \rho_0 - \rho_1$ Where ρ_0 (resp. ρ_1) is half the sum of the even (resp. odd) positive roots. Then

$$ch_{K(\lambda)} = \frac{L_1}{L_0} \sum_{w \in W} \varepsilon(w) e^{w(\lambda + \rho)}$$

.

Characters of Kac modules (continued)

This can be written:

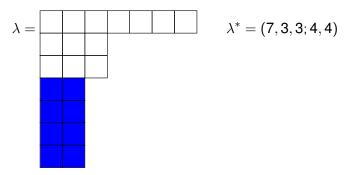
$$L_0^{-1}\sum_{w\in W}\varepsilon(w)\,w\left(\left(\prod_{\alpha\in\Phi_1^+}(1+e^{-\alpha})\right)e^{\lambda+\rho_0}\right)$$

Expanding the product, this can be evaluated using the Weyl character formula for g_0 . So Kac modules have nice character formulas.

Polynomial representations

There are two (overlapping but distinct) classes of irreducibles for which there is a nice character formula.

If λ is a (m, n) hook partition whose Young diagram omits the box (m+1, n+1) then there is a dominant weight λ^* obtained by transposing part of λ . Example: m = n = 3



Polynomial representations (continued)

In this case Berele and Regev showed that the character of $L(\lambda^*)$ is the supersymmetric Schur function $s_{\lambda}(t|u)$.

$$m{s}_{\lambda}(t|u) = \sum_{\mu,
u} m{c}_{\mu,
u}^{\lambda} m{s}_{\mu}(t) m{s}_{
u'}(u)$$

where $c_{\mu,\nu}^{\lambda}$ is the Littlewood-Richardson coefficient.

A different class of irreducibles with nice characters are $L(\lambda)$ where λ is typical. In this case $L(\lambda) = K(\lambda)$ and we have already seen the character formula.

Atypicality one

Theorem (Hughes, King, van der Jeugt and Thierry-Mieg)

If λ has atypicality 1, then $K(\lambda)$ has length 2: there is a short exact sequence

$$0 \longrightarrow L(\mu) \longrightarrow K(\lambda) \longrightarrow L(\lambda) \longrightarrow 0,$$

where $L(\mu)$ is another irreducible module. The dominant weight μ also has atypicality 1. Let α be the atypical root, i.e. the unique $\alpha \in \Phi_1^+$ with $(\alpha | \lambda + \rho) = 0$. Then

$$\chi_{L(\lambda)} = L_0^{-1} \sum_{w \in W} \varepsilon(w) \, w \left(\left(\prod_{\substack{\gamma \in \Phi_1^+ \\ \gamma \neq \alpha}} (1 + e^{-\alpha \gamma}) \right) e^{\lambda + \rho_0} \right)$$

Sage implementation

The character formulas for Kac modules and for irreducibles with atypicality 0 and 1 are implemented in some preliminary code.

This code is not polished and not merged in Sage. But it works.

You can find the file combinat/crystals/scharacter.sage in the branch public/stensor.

The SuperWeylCharacterRing class inherits from WeylCharacterRing.

It is desirable to remove the limitation on atypicality.

Crystals

Two classes of $\mathfrak{gl}(m|n)$ modules have nice crystal bases.

- Polynomial representations (Benkart, Kang and Kashiwara)
- Kac crystals (Jae-Hoon Kwon)

Thanks to Franco Saliola, Travis Scrimshaw and Anne Schilling, these are implemented in Sage.

Both these theories are rooted in the theory of quantum groups.

Crystals of atypicality 1

Crystal bases of modules of atypicality 0 are known thanks to Kwon, since in this case $L(\lambda) = K(\lambda)$.

For atypicality 1, recall that we have a short exact sequence

$$0 \longrightarrow L(\mu) \longrightarrow K(\lambda) \longrightarrow L(\lambda) \longrightarrow 0,$$

In particularly favorable cases, one of $L(\mu)$ or $L(\lambda)$ might be polynomial and the other not.

Say $L(\lambda)$ is polynomial.

In this case, we think a crystal base for $L(\mu)$ can be concocted by identifying the crystal for $L(\lambda)$ inside of $K(\lambda)$ and discarding it. More generally, crystals of atypicality 1 can be sought by a procedure of cutting apart Kac crystals.

Cutting the Kac crystal

A first idea is that one eliminates 0 arrows from the crystal if the head v of the arrow has $(wt(v), h_0) = 0$.

This procedure (slightly modified) seems to work in practice, but it is a farther step removed from the origins of crystal bases in the theory of quantum groups. It is not certain that a nice theory exists.

The definitions followed by BKK and Kwon will require modification before they can be used in atypicality 1.

These experiments may point the way to a solution to this problem.